- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Benavides, Mar (2)
-
Grosso, Olivier (2)
-
Guigue, Catherine (2)
-
Riemann, Lasse (2)
-
Tedetti, Marc (2)
-
Armin, Gabrielle (1)
-
Berman-Frank, Ilana (1)
-
Bonnet, Sophie (1)
-
Cébron, Aurélie (1)
-
Dupouy, Cécile (1)
-
Filella, Alba (1)
-
Garel, Marc (1)
-
Guyomarch, Léa (1)
-
Hallstrøm, Søren (1)
-
Inomura, Keisuke (1)
-
Le Moigne, Frédéric A. C. (1)
-
Leblanc, Karine (1)
-
Martinot, Pauline (1)
-
Paix, Benoît (1)
-
Poletti, Emilie (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Dinitrogen (N₂) fixation by diazotrophs supports ocean productivity. Diazotrophs include photoautotrophic cyanobacteria, non-cyanobacterial diazotrophs (NCDs), and the recently discovered N2-fixing haptophyte. While NCDs are ubiquitous in the ocean, their ecology and metabolism remain largely unknown. Unlike cyanobacterial diazotrophs and the haptophyte, NCDs are primarily heterotrophic and depend on dissolved organic matter (DOM) for carbon and energy. However, conventional DOM amendment incubations do not allow discerning how different diazotrophs use DOM molecules, limiting our knowledge on DOM–diazotroph interactions. To identify diazotrophs using DOM, we amended North Pacific microbial communities with 13C-labeled DOM from phytoplankton cultures that was molecularly characterized, revealing the dominance of nitrogen-rich compounds. After DOM additions, we observed a community shift from cyanobacterial diazotrophs like Crocosphaera and Trichodesmium to NCDs at stations where the N2-fixing haptophyte abundance was relatively low. Through DNA stable isotope probing and gene sequencing, we identified diverse diazotrophs capable of taking up DOM. Our findings highlight unexpected DOM uptake by the haptophyte’s nitroplast, changes in community structure, and previously unrecognized osmotrophic behavior in NCDs, shaped by local biogeochemical conditions.more » « less
-
Benavides, Mar; Bonnet, Sophie; Le Moigne, Frédéric A. C.; Armin, Gabrielle; Inomura, Keisuke; Hallstrøm, Søren; Riemann, Lasse; Berman-Frank, Ilana; Poletti, Emilie; Garel, Marc; et al (, The ISME Journal)Abstract The photosynthetic cyanobacterium Trichodesmium is widely distributed in the surface low latitude ocean where it contributes significantly to N2 fixation and primary productivity. Previous studies found nifH genes and intact Trichodesmium colonies in the sunlight-deprived meso- and bathypelagic layers of the ocean (200–4000 m depth). Yet, the ability of Trichodesmium to fix N2 in the dark ocean has not been explored. We performed 15N2 incubations in sediment traps at 170, 270 and 1000 m at two locations in the South Pacific. Sinking Trichodesmium colonies fixed N2 at similar rates than previously observed in the surface ocean (36–214 fmol N cell−1 d−1). This activity accounted for 40 ± 28% of the bulk N2 fixation rates measured in the traps, indicating that other diazotrophs were also active in the mesopelagic zone. Accordingly, cDNA nifH amplicon sequencing revealed that while Trichodesmium accounted for most of the expressed nifH genes in the traps, other diazotrophs such as Chlorobium and Deltaproteobacteria were also active. Laboratory experiments simulating mesopelagic conditions confirmed that increasing hydrostatic pressure and decreasing temperature reduced but did not completely inhibit N2 fixation in Trichodesmium. Finally, using a cell metabolism model we predict that Trichodesmium uses photosynthesis-derived stored carbon to sustain N2 fixation while sinking into the mesopelagic. We conclude that sinking Trichodesmium provides ammonium, dissolved organic matter and biomass to mesopelagic prokaryotes.more » « less
An official website of the United States government
